Windows本地部署中文羊驼模型(Chinese-Alpaca-Pro-7B)(通俗易懂版)

Windows本地部署中文羊驼模型(Chinese-Alpaca-Pro-7B)(通俗易懂版)

最近由于项目原因需要部署大语言模型, 但碍于经济实力, 只能部署在笔记本电脑上部署量化模型, (电脑至少有16G运行内存),搜集了网上的相关部署资料仍然踩了不少坑,原因在于开源项目在不断更新,导致我们看了别人的教程仍然会出错。(切记,开源项目一定要看准更新版本,很多教程并没有对这个进行详细说明,导致我们按照教程下载了最新的开源项目会出现新的问题。)

民间版中文羊驼模型开源地址:GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU部署 (Chinese LLaMA & Alpaca LLMs)

Linux和Mac的教程在开源的仓库中有提供,当然如果你是M1的也可以参考以下文章:

https://gist.github.com/cedrickchee/e8d4cb0c4b1df6cc47ce8b18457ebde0

准备工作

最好是有代理, 不然你下载东西可能失败, 我为了下个模型花了一天时间, 痛哭~

我们需要先在电脑上安装以下环境:

GitPython3.9(使用Anaconda3创建该环境) Cmake(如果你电脑没有C和C++的编译环境还需要安装mingw)

Git

下载地址:Git - Downloading Package

下载好安装包后打开, 一直点下一步安装即可...

在cmd窗口输入以下如果有版本号显示说明已经安装成功

git -v

Python3.9

我这里使用Anaconda3来使用Python, Anaconda3是什么?

Anaconda,中文大蟒蛇,是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。其中,conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。

如果你熟悉docker, 那么你可以把docker的概念带过来, docker可以创建很多个容器, 每个容器的环境可能一样也可能不一样, Anaconda3也是一样的, 它可以创建很多个不同的Python版本, 互相不冲突, 想用哪个版本就切换到哪个版本...

Anaconda3下载地址:Anaconda | Anaconda Distribution

等待安装好后一直点next, 直到点Finish关闭即可

在cmd窗口输入以下命令, 显示版本号则说明安装成功

conda -V

接下来我们在cmd窗口输入以下命令创建一个python3.9的环境

conda create --name py39 python=3.9 -y --name后面的py39是环境名字, 可以自己任意起, 切换环境的时候需要它

python=3.9是指定python版本

添加-y后就不需要手动输入y去确认安装了

查看有哪些环境的命令:

conda info -e

激活/切换环境的命令:

conda activate py39

要使用哪个环境的话换成对应名字即可

要退出环境的话输入:

conda deactivate

Cmake

这是一个编译工具, 我们需要使用它去编译llama.cpp, 量化模型需要用到, 不量化模型个人电脑跑不起来, 觉得量化这个概念不理解的可以理解为压缩, 这种概念是不对的, 只是为了帮助你更好的理解.

(在安装之前我们需要安装mingw, 避免编译时找不到编译环境, 按下win+r快捷键输入powershell

输入命令安装scoop, 这是一个包管理器, 我们使用它来下载安装mingw:

这个地方如果没有开代理的话可能会出错

iex "& {$(irm get.scoop.sh)} -RunAsAdmin" 安装好后分别运行下面两个命令(添加库):

scoop bucket add extras scoop bucket add main 输入命令安装mingw

scoop install mingw 到这就已经安装好mingw了。)

上面框住的内容可以直接跳过直接安装cmake即可,因为安装scoop需要代理容易出错。

接下来安装Cmake

地址:Download | CMake

安装好后点Install即可

下载模型 我们需要下载两个模型, 一个是原版的LLaMA模型, 一个是扩充了中文的模型, 后续会进行一个合并模型的操作

原版模型下载地址(要代理):https://ipfs.io/ipfs/Qmb9y5GCkTG7ZzbBWMu2BXwMkzyCKcUjtEKPpgdZ7GEFKm/ 网盘地址:文件分享 (115.com)访问码:a835

下载这三个即可。

扩充了中文的模型下载:(即Chinese-Alpaca-Pro-7B )

网盘地址:chinese_alpaca_pro_lora_7b.zip_免费高速下载|百度网盘-分享无限制 (baidu.com)

合并模型

在你下载了模型的目录内打开cmd窗口, 如下:

这里我先说下这图片中的两个目录里文件是啥吧

先是chinese-alpaca-lora-7b目录, 这个目录一般你下载下来就不用动了, 格式如下:

chinese-alpaca-lora-7b/ - adapter_config.json - adapter_model.bin - special_tokens_map.json - tokenizer_config.json - tokenizer.model

然后是path_to_original_llama_root_dir目录, 这个文件夹需要创建, 保持一致的文件名, 目录内的格式如下:

path_to_original_llama_root_dir/

- 7B/ #这是一个名为7B的文件夹

- checklist.chk

- consolidated.00.pth

- params.json

- tokenizer_checklist.chk

- tokenizer.model

打开窗口后需要先激活python环境, 使用的就是前面装Anaconda3

# 不记得有哪些环境的先运行以下命令

conda info -e

# 然后激活你需要的环境 我的环境名是py39

conda activate py39

切换好后分别执行以下命令安装依赖库

pip install git+https://github.com/huggingface/transformers pip install sentencepiece==0.1.97 pip install peft==0.2.0

pip install pytorch==1.31.1(记得装,如果有问题,网上也有很多方法可以参考)

执行命令安装成功后会有Successfully的字眼

接下来需要将原版模型转HF格式, 需要借助最新版🤗transformers提供的脚本convert_llama_weights_to_hf.py

transformers/convert_llama_weights_to_hf.py at main · huggingface/transformers · GitHub

# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

# http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

import argparse

import gc

import json

import math

import os

import shutil

import warnings

import torch

from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer

try:

from transformers import LlamaTokenizerFast

except ImportError as e:

warnings.warn(e)

warnings.warn(

"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"

)

LlamaTokenizerFast = None

"""

Sample usage:

```

python src/transformers/models/llama/convert_llama_weights_to_hf.py \

--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path

```

Thereafter, models can be loaded via:

```py

from transformers import LlamaForCausalLM, LlamaTokenizer

model = LlamaForCausalLM.from_pretrained("/output/path")

tokenizer = LlamaTokenizer.from_pretrained("/output/path")

```

Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions

come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).

"""

INTERMEDIATE_SIZE_MAP = {

"7B": 11008,

"13B": 13824,

"30B": 17920,

"65B": 22016,

}

NUM_SHARDS = {

"7B": 1,

"13B": 2,

"30B": 4,

"65B": 8,

}

def compute_intermediate_size(n):

return int(math.ceil(n * 8 / 3) + 255) // 256 * 256

def read_json(path):

with open(path, "r") as f:

return json.load(f)

def write_json(text, path):

with open(path, "w") as f:

json.dump(text, f)

def write_model(model_path, input_base_path, model_size):

os.makedirs(model_path, exist_ok=True)

tmp_model_path = os.path.join(model_path, "tmp")

os.makedirs(tmp_model_path, exist_ok=True)

params = read_json(os.path.join(input_base_path, "params.json"))

num_shards = NUM_SHARDS[model_size]

n_layers = params["n_layers"]

n_heads = params["n_heads"]

n_heads_per_shard = n_heads // num_shards

dim = params["dim"]

dims_per_head = dim // n_heads

base = 10000.0

inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

# permute for sliced rotary

def permute(w):

return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)

print(f"Fetching all parameters from the checkpoint at {input_base_path}.")

# Load weights

if model_size == "7B":

# Not shared

# (The sharded implementation would also work, but this is simpler.)

loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")

else:

# Sharded

loaded = [

torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")

for i in range(num_shards)

]

param_count = 0

index_dict = {"weight_map": {}}

for layer_i in range(n_layers):

filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"

if model_size == "7B":

# Unsharded

state_dict = {

f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(

loaded[f"layers.{layer_i}.attention.wq.weight"]

),

f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(

loaded[f"layers.{layer_i}.attention.wk.weight"]

),

f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],

f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],

f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],

f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],

f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],

f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],

f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],

}

else:

# Sharded

# Note that in the 13B checkpoint, not cloning the two following weights will result in the checkpoint

# becoming 37GB instead of 26GB for some reason.

state_dict = {

f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][

f"layers.{layer_i}.attention_norm.weight"

].clone(),

f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][

f"layers.{layer_i}.ffn_norm.weight"

].clone(),

}

state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(

torch.cat(

[

loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)

for i in range(num_shards)

],

dim=0,

).reshape(dim, dim)

)

state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(

torch.cat(

[

loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)

for i in range(num_shards)

],

dim=0,

).reshape(dim, dim)

)

state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(

[

loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)

for i in range(num_shards)

],

dim=0,

).reshape(dim, dim)

state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(

[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1

)

state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(

[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0

)

state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(

[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1

)

state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(

[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0

)

state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq

for k, v in state_dict.items():

index_dict["weight_map"][k] = filename

param_count += v.numel()

torch.save(state_dict, os.path.join(tmp_model_path, filename))

filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"

if model_size == "7B":

# Unsharded

state_dict = {

"model.embed_tokens.weight": loaded["tok_embeddings.weight"],

"model.norm.weight": loaded["norm.weight"],

"lm_head.weight": loaded["output.weight"],

}

else:

state_dict = {

"model.norm.weight": loaded[0]["norm.weight"],

"model.embed_tokens.weight": torch.cat(

[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1

),

"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),

}

for k, v in state_dict.items():

index_dict["weight_map"][k] = filename

param_count += v.numel()

torch.save(state_dict, os.path.join(tmp_model_path, filename))

# Write configs

index_dict["metadata"] = {"total_size": param_count * 2}

write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))

config = LlamaConfig(

hidden_size=dim,

intermediate_size=compute_intermediate_size(dim),

num_attention_heads=params["n_heads"],

num_hidden_layers=params["n_layers"],

rms_norm_eps=params["norm_eps"],

)

config.save_pretrained(tmp_model_path)

# Make space so we can load the model properly now.

del state_dict

del loaded

gc.collect()

print("Loading the checkpoint in a Llama model.")

model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)

# Avoid saving this as part of the config.

del model.config._name_or_path

print("Saving in the Transformers format.")

model.save_pretrained(model_path)

shutil.rmtree(tmp_model_path)

def write_tokenizer(tokenizer_path, input_tokenizer_path):

# Initialize the tokenizer based on the `spm` model

tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast

print("Saving a {tokenizer_class} to {tokenizer_path}")

tokenizer = tokenizer_class(input_tokenizer_path)

tokenizer.save_pretrained(tokenizer_path)

def main():

parser = argparse.ArgumentParser()

parser.add_argument(

"--input_dir",

help="Location of LLaMA weights, which contains tokenizer.model and model folders",

)

parser.add_argument(

"--model_size",

choices=["7B", "13B", "30B", "65B", "tokenizer_only"],

)

parser.add_argument(

"--output_dir",

help="Location to write HF model and tokenizer",

)

args = parser.parse_args()

if args.model_size != "tokenizer_only":

write_model(

model_path=args.output_dir,

input_base_path=os.path.join(args.input_dir, args.model_size),

model_size=args.model_size,

)

spm_path = os.path.join(args.input_dir, "tokenizer.model")

write_tokenizer(args.output_dir, spm_path)

if __name__ == "__main__":

main()

在cmd窗口执行命令(如果你使用了anaconda,执行命令前请先激活环境):

python convert_llama_weights_to_hf.py --input_dir path_to_original_llama_root_dir --model_size 7B --output_dir path_to_original_llama_hf_dir

接下来合并输出PyTorch版本权重(.pth文件),使用merge_llama_with_chinese_lora.py脚本

在目录新建一个merge_llama_with_chinese_lora.py文件, 用记事本打开将以下代码粘贴进去

注意:我这里是为了方便直接拷贝出来了,脚本可能会更新,建议直接去以下地址拷贝最新的:

Chinese-LLaMA-Alpaca/merge_llama_with_chinese_lora.py at main · ymcui/Chinese-LLaMA-Alpaca · GitHub

"""

Borrowed and modified from https://github.com/tloen/alpaca-lora

"""

import argparse

import os

import json

import gc

import torch

import transformers

import peft

from peft import PeftModel

parser = argparse.ArgumentParser()

parser.add_argument('--base_model',default=None,required=True,type=str,help="Please specify a base_model")

parser.add_argument('--lora_model',default=None,required=True,type=str,help="Please specify a lora_model")

# deprecated; the script infers the model size from the checkpoint

parser.add_argument('--model_size',default='7B',type=str,help="Size of the LLaMA model",choices=['7B','13B'])

parser.add_argument('--offload_dir',default=None,type=str,help="(Optional) Please specify a temp folder for offloading (useful for low-RAM machines). Default None (disable offload).")

parser.add_argument('--output_dir',default='./',type=str)

args = parser.parse_args()

assert (

"LlamaTokenizer" in transformers._import_structure["models.llama"]

), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"

from transformers import LlamaTokenizer, LlamaForCausalLM

BASE_MODEL = args.base_model

LORA_MODEL = args.lora_model

output_dir = args.output_dir

assert (

BASE_MODEL

), "Please specify a BASE_MODEL in the script, e.g. 'decapoda-research/llama-7b-hf'"

tokenizer = LlamaTokenizer.from_pretrained(LORA_MODEL)

if args.offload_dir is not None:

# Load with offloading, which is useful for low-RAM machines.

# Note that if you have enough RAM, please use original method instead, as it is faster.

base_model = LlamaForCausalLM.from_pretrained(

BASE_MODEL,

load_in_8bit=False,

torch_dtype=torch.float16,

offload_folder=args.offload_dir,

offload_state_dict=True,

low_cpu_mem_usage=True,

device_map={"": "cpu"},

)

else:

# Original method without offloading

base_model = LlamaForCausalLM.from_pretrained(

BASE_MODEL,

load_in_8bit=False,

torch_dtype=torch.float16,

device_map={"": "cpu"},

)

base_model.resize_token_embeddings(len(tokenizer))

assert base_model.get_input_embeddings().weight.size(0) == len(tokenizer)

tokenizer.save_pretrained(output_dir)

print(f"Extended vocabulary size: {len(tokenizer)}")

first_weight = base_model.model.layers[0].self_attn.q_proj.weight

first_weight_old = first_weight.clone()

## infer the model size from the checkpoint

emb_to_model_size = {

4096 : '7B',

5120 : '13B',

6656 : '30B',

8192 : '65B',

}

embedding_size = base_model.get_input_embeddings().weight.size(1)

model_size = emb_to_model_size[embedding_size]

print(f"Loading LoRA for {model_size} model")

lora_model = PeftModel.from_pretrained(

base_model,

LORA_MODEL,

device_map={"": "cpu"},

torch_dtype=torch.float16,

)

assert torch.allclose(first_weight_old, first_weight)

# merge weights

print(f"Peft version: {peft.__version__}")

print(f"Merging model")

if peft.__version__ > '0.2.0':

# merge weights - new merging method from peft

lora_model = lora_model.merge_and_unload()

else:

# merge weights

for layer in lora_model.base_model.model.model.layers:

if hasattr(layer.self_attn.q_proj,'merge_weights'):

layer.self_attn.q_proj.merge_weights = True

if hasattr(layer.self_attn.v_proj,'merge_weights'):

layer.self_attn.v_proj.merge_weights = True

if hasattr(layer.self_attn.k_proj,'merge_weights'):

layer.self_attn.k_proj.merge_weights = True

if hasattr(layer.self_attn.o_proj,'merge_weights'):

layer.self_attn.o_proj.merge_weights = True

if hasattr(layer.mlp.gate_proj,'merge_weights'):

layer.mlp.gate_proj.merge_weights = True

if hasattr(layer.mlp.down_proj,'merge_weights'):

layer.mlp.down_proj.merge_weights = True

if hasattr(layer.mlp.up_proj,'merge_weights'):

layer.mlp.up_proj.merge_weights = True

lora_model.train(False)

# did we do anything?

assert not torch.allclose(first_weight_old, first_weight)

lora_model_sd = lora_model.state_dict()

del lora_model, base_model

num_shards_of_models = {'7B': 1, '13B': 2}

params_of_models = {

'7B':

{

"dim": 4096,

"multiple_of": 256,

"n_heads": 32,

"n_layers": 32,

"norm_eps": 1e-06,

"vocab_size": -1,

},

'13B':

{

"dim": 5120,

"multiple_of": 256,

"n_heads": 40,

"n_layers": 40,

"norm_eps": 1e-06,

"vocab_size": -1,

},

}

params = params_of_models[model_size]

num_shards = num_shards_of_models[model_size]

n_layers = params["n_layers"]

n_heads = params["n_heads"]

dim = params["dim"]

dims_per_head = dim // n_heads

base = 10000.0

inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

def permute(w):

return (

w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)

)

def unpermute(w):

return (

w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)

)

def translate_state_dict_key(k):

k = k.replace("base_model.model.", "")

if k == "model.embed_tokens.weight":

return "tok_embeddings.weight"

elif k == "model.norm.weight":

return "norm.weight"

elif k == "lm_head.weight":

return "output.weight"

elif k.startswith("model.layers."):

layer = k.split(".")[2]

if k.endswith(".self_attn.q_proj.weight"):

return f"layers.{layer}.attention.wq.weight"

elif k.endswith(".self_attn.k_proj.weight"):

return f"layers.{layer}.attention.wk.weight"

elif k.endswith(".self_attn.v_proj.weight"):

return f"layers.{layer}.attention.wv.weight"

elif k.endswith(".self_attn.o_proj.weight"):

return f"layers.{layer}.attention.wo.weight"

elif k.endswith(".mlp.gate_proj.weight"):

return f"layers.{layer}.feed_forward.w1.weight"

elif k.endswith(".mlp.down_proj.weight"):

return f"layers.{layer}.feed_forward.w2.weight"

elif k.endswith(".mlp.up_proj.weight"):

return f"layers.{layer}.feed_forward.w3.weight"

elif k.endswith(".input_layernorm.weight"):

return f"layers.{layer}.attention_norm.weight"

elif k.endswith(".post_attention_layernorm.weight"):

return f"layers.{layer}.ffn_norm.weight"

elif k.endswith("rotary_emb.inv_freq") or "lora" in k:

return None

else:

print(layer, k)

raise NotImplementedError

else:

print(k)

raise NotImplementedError

def save_shards(lora_model_sd, num_shards: int):

# Add the no_grad context manager

with torch.no_grad():

if num_shards == 1:

new_state_dict = {}

for k, v in lora_model_sd.items():

new_k = translate_state_dict_key(k)

if new_k is not None:

if "wq" in new_k or "wk" in new_k:

new_state_dict[new_k] = unpermute(v)

else:

new_state_dict[new_k] = v

os.makedirs(output_dir, exist_ok=True)

print(f"Saving shard 1 of {num_shards} into {output_dir}/consolidated.00.pth")

torch.save(new_state_dict, output_dir + "/consolidated.00.pth")

with open(output_dir + "/params.json", "w") as f:

json.dump(params, f)

else:

new_state_dicts = [dict() for _ in range(num_shards)]

for k in list(lora_model_sd.keys()):

v = lora_model_sd[k]

new_k = translate_state_dict_key(k)

if new_k is not None:

if new_k=='tok_embeddings.weight':

print(f"Processing {new_k}")

assert v.size(1)%num_shards==0

splits = v.split(v.size(1)//num_shards,dim=1)

elif new_k=='output.weight':

print(f"Processing {new_k}")

splits = v.split(v.size(0)//num_shards,dim=0)

elif new_k=='norm.weight':

print(f"Processing {new_k}")

splits = [v] * num_shards

elif 'ffn_norm.weight' in new_k:

print(f"Processing {new_k}")

splits = [v] * num_shards

elif 'attention_norm.weight' in new_k:

print(f"Processing {new_k}")

splits = [v] * num_shards

elif 'w1.weight' in new_k:

print(f"Processing {new_k}")

splits = v.split(v.size(0)//num_shards,dim=0)

elif 'w2.weight' in new_k:

print(f"Processing {new_k}")

splits = v.split(v.size(1)//num_shards,dim=1)

elif 'w3.weight' in new_k:

print(f"Processing {new_k}")

splits = v.split(v.size(0)//num_shards,dim=0)

elif 'wo.weight' in new_k:

print(f"Processing {new_k}")

splits = v.split(v.size(1)//num_shards,dim=1)

elif 'wv.weight' in new_k:

print(f"Processing {new_k}")

splits = v.split(v.size(0)//num_shards,dim=0)

elif "wq.weight" in new_k or "wk.weight" in new_k:

print(f"Processing {new_k}")

v = unpermute(v)

splits = v.split(v.size(0)//num_shards,dim=0)

else:

print(f"Unexpected key {new_k}")

raise ValueError

for sd,split in zip(new_state_dicts,splits):

sd[new_k] = split.clone()

del split

del splits

del lora_model_sd[k],v

gc.collect() # Effectively enforce garbage collection

os.makedirs(output_dir, exist_ok=True)

for i,new_state_dict in enumerate(new_state_dicts):

print(f"Saving shard {i+1} of {num_shards} into {output_dir}/consolidated.0{i}.pth")

torch.save(new_state_dict, output_dir + f"/consolidated.0{i}.pth")

with open(output_dir + "/params.json", "w") as f:

print(f"Saving params.json into {output_dir}/params.json")

json.dump(params, f)

save_shards(lora_model_sd=lora_model_sd, num_shards=num_shards)

执行命令(如果你使用了anaconda,执行命令前请先激活环境):

python merge_llama_with_chinese_lora.py --base_model path_to_original_llama_hf_dir --lora_model chinese-alpaca-lora-7b --output_dir path_to_output_dir

参数说明:

--base_model:存放HF格式的LLaMA模型权重和配置文件的目录(前面步骤中转的hf格式) --lora_model:扩充了中文的模型目录 --output_dir:指定保存全量模型权重的目录,默认为./(合并出来的目录) (可选)--offload_dir:对于低内存用户需要指定一个offload缓存路径 更详细的请看开原仓库:GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署 (Chinese LLaMA & Alpaca LLMs)

到这里就已经合并好模型了, 目录:

上面如果你用的是chinese_alpaca_pro_lora_7b,步骤也一样,不用担心。

接下来就准备部署吧

部署模型

我们需要先下载llama.cpp进行模型的量化

安装llama.cpp

LLaMa.cpp 的项目地址在:https://github.com/ggerganov/llama.cpp

GitHub进不去的,这边也提供一个镜像哦:https://hub.nuaa.cf/ggerganov/llama.cpp

这边不建议下载最新版,下载到ff966e7这个版本就ok。

主要原因在于convert-pth-to-ggml.py这个文件被替换成to-gguf.py。导致第一步将pth文件量化成fp16.bin时会出现一些问题。

我在很多大佬的教程里面看到推荐使用“MinGW”进行编译,但是在我实际的编译中,使用MinGW会遇到错误,原因在于缺少visual studio的 函数库,因此这边建议使用的是官方提供的编译方式。

在窗口中输入以下命令进入刚刚下载的llama.cpp

cd llama.cpp

mkdir build

cd build

cmake ..

cmake --build . --config Release

走完以上命令后在build =》bin=》Release 目录下应该会有以下文件:

画红线的比较重要。

如果没有以上的文件, 那你应该是报错了, 基本上要么就是下载依赖的地方错, 要么就是编译的地方出错。当然也有可能是llama.cpp下载了最新版导致生成的文件不一样。切记,不用下载最新版。

接下来在llama.cpp内新建一个zh-models文件夹, 准备生成量化版本模型

zh-models的目录格式如下:

zh-models/

- 7B/ #这是一个名为7B的文件夹 - consolidated.00.pth - params.json - tokenizer.model

把path_to_output_dir文件夹内的consolidated.00.pth和params.json文件放入上面格式中的位置

把path_to_output_dir文件夹内的tokenizer.model文件放在跟7B文件夹同级的位置

接着在窗口中输入命令将上述.pth模型权重转换为ggml的FP16格式,生成文件路径为zh-models/7B/ggml-model-f16.bin

python convert-pth-to-ggml.py zh-models/7B/ 1

进一步对FP16模型进行4-bit量化,生成量化模型文件路径为zh-models/7B/ggml-model-q4_0.bin

D:\llama\llama.cpp\bin\quantize.exe ./zh-models/7B/ggml-model-f16.bin ./zh-models/7B/ggml-model-q4_0.bin 2

quantize.exe文件在bin目录内, 自行根据路径更改

已经量化好了, 可以进行部署看看效果了, 部署的话如果你电脑配置好的可以选择部署f16的,否则就部署q4_0的....

D:\llama\llama.cpp\bin\main.exe -m zh-models/7B/ggml-model-q4_0.bin --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.3

在提示符 > 之后输入你的prompt,cmd/ctrl+c中断输出,多行信息以\作为行尾

常用参数(更多参数请执行D:\llama\llama.cpp\bin\main.exe -h命令):

-ins 启动类ChatGPT对话交流的运行模式 -f 指定prompt模板,alpaca模型请加载prompts/alpaca.txt -c 控制上下文的长度,值越大越能参考更长的对话历史(默认:512) -n 控制回复生成的最大长度(默认:128) -b 控制batch size(默认:8),可适当增加 -t 控制线程数量(默认:4),可适当增加 --repeat_penalty 控制生成回复中对重复文本的惩罚力度 --temp 温度系数,值越低回复的随机性越小,反之越大 --top_p, top_k 控制解码采样的相关参数

想要部署f16的可以把命令中-m参数换成zh-models/7B/ggml-model-f16.bin即可

部署效果:

参考:

GitHub - ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署 (Chinese LLaMA & Alpaca LLMs)

原文链接:https://blog.csdn.net/qq_38238956/article/details/130113599